







# Acknowledgements & declaration of interest

- Many people... including: Sergio Graziosi, Jeff Brunton, Alison O'Mara-Eves, lan Shemilt, Claire Stansfield (EPPI-Centre / EPPI-Reviewer and text mining / automation / information science); Chris Mavergames and Cochrane IKMD team; Julian Elliott and others on Cochrane Transform project; lain Marshall (Kings College); Byron Wallace (Northeastern University); the Digital Services Team at the National Institute for Health & Care Excellence (NICE); Cochrane Crowd
- I am employed by University College London; receive funding from Cochrane and the funders below for this and related work; co-lead of Project Transform; lead EPPI-Reviewer software development.
- Parts of this work funded by: Cochrane, JISC, Medical Research Council (UK), National Health & Medical Research Council (Australia), Wellcome Trust, Bill & Melinda Gates Foundation, Robert Wood Johnson Foundation. All views expressed are my own, and not necessarily those of these funders.
- ('Creative commons' photos used for illustrations)



# Aims and objectives

- AIM: outline the potential for using Al/ machine learning to make systematic reviewing HTAs more efficient
- OBJECTIVES:
  - How some of these technologies especially machine learning works
  - Demonstrate / discuss some current tools
  - Discuss future directions of travel



# **Outline**

- Introduction to technologies (presentation)
- Practical sessions:
  - Developing search strategies
  - Using citation (and related) networks
  - BREAK
  - Using machine learning classifiers
  - Mapping research activity
- Where's it going (evidence surveillance)??
- Discussion



# Context: systematic reviews and HTAs

- Demanding context
- Need to be correct
- Need to be seen to be correct
- Demand very high recall (over precision)
- At odds with much information retrieval work



# Why use automation in systematic reviews / HTAs?

- Data deluge
  - E.g. more than 100 publications of trials appear each day (probably)
- Inadequacy of current systems
  - We lose research systematically and then spend lots of £ finding it again
    - E.g. in 67 Cochrane reviews in March 2014: >163k citations were screened; 6,599 full text reports were screened; 703 were included
    - That's about 2 million citations screened annually just for Cochrane reviews
    - Because people make mistakes, recommendation is double citation screening... (££)
  - Even after relevant studies are identified, data extraction consumes more £££.
- This means that:
  - only a fraction of available studies are included in systematic reviews / HTAs;
  - systematic reviews do not cover all questions/ domains comprehensively;
  - we don't know when systematic reviews \*need\* to be updated...



- I could go on... (but won't)
  - There are many other inefficiencies in the systematic review / HTAs process



# Why: the current model is unsustainable

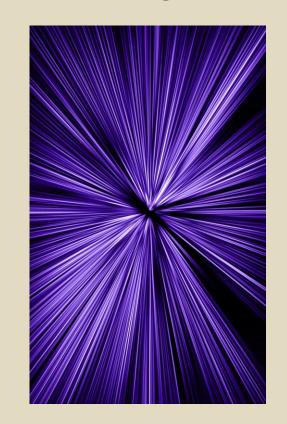
- More research is published than ever
- We are better at searching (and finding) more of it
- Reviews / HTAs are getting more complex
- Resources are limited
- We need new approaches which maximise the use of scarce human resource





# How we will speed up reviewing

- Through developing –
   and using technologies
   which automate what can
   be automated; and
- By maximising the use of scarce and valuable human effort



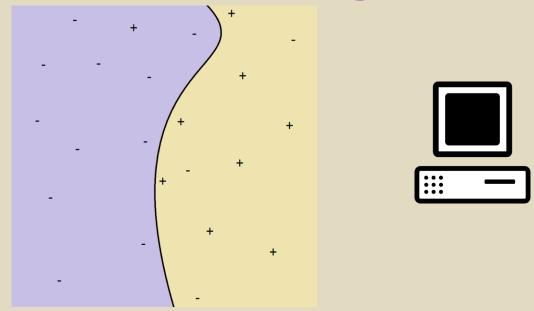


# Which technologies are we using?

- Many...
- Automatic 'clustering' (unsupervised)
- Machine learning classifiers (supervised)
  - These 'learn' to tell the difference between two types of study / document
    - (e.g. "does this citation describe an RCT?")
  - They learn from classification decisions made by humans.



# How does machine learning work?



Building machine classifiers: a very brief de-mystification



# 1. A dictionary and index are created

- First, the key terms in the studies are listed (ignoring very common words)
- Second, the studies are indexed against the list of terms
  - (the resulting matrix can be quite large)
- Next...

### e.g. We have two studies - one is an RCT, and one isn't an RCT

Study 1 Effectiveness of asthma self-care interventions: a systematic review (not an RCT)

Study 2 Effectiveness of a self-monitoring asthma intervention: an RCT (an RCT)

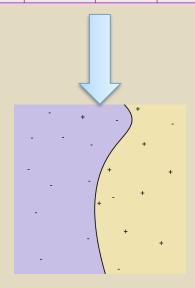
| RCT? |   |   |   |   |   |   |   |   |   |   |
|------|---|---|---|---|---|---|---|---|---|---|
| 0    | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1    | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |



# 2. A statistical model is built

The matrix is used to create a statistical model which is able to distinguish between the two classes of document (e.g. between RCTs and non-RCTs where we have 280,000+ rows of data)

| RCT? | Effectiveness | asthma | self | care | interventions | systematic | review | monitoring | intervention | RCT |
|------|---------------|--------|------|------|---------------|------------|--------|------------|--------------|-----|
| 0    | 1             | 1      | 1    | 1    | 1             | 1          | 1      | 0          | 0            | 0   |
| 1    | 1             | 1      | 1    | 0    | 0             | 0          | 0      | 1          | 1            | 1   |



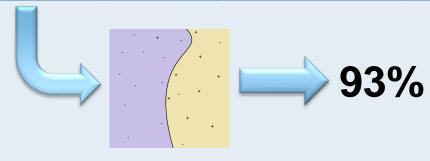


# 3. The model is applied to new documents

- New citations are indexed against the previously generated list of terms
- The resulting matrix is fed into the previously generated model
- And the model will assign a probability that the new document is, or is not a member of the class in question

### e.g. The effectiveness of a school-based asthma management programme: an RCT

| Effectiveness | asthma | self | care | interventions | systematic | review | monitoring | intervention | RCT |
|---------------|--------|------|------|---------------|------------|--------|------------|--------------|-----|
| 1             | 1      | 0    | 0    | 0             | 0          | 0      | 0          | 0            | 1   |





# Automation in systematic reviews HTAs – what can be done?

- Study identification:
  - Citation screening
  - RCT classifier
- Mapping research activity
- Data extraction
  - Risk of Bias assessment
  - Other study characteristics
  - Extraction of statistical data
- (Synthesis and conclusions)





# **Assisting search** development

Purpose: to explore linkages or words in text or controlled vocabulary



### **Applications:**

- Increase precision
- Increase sensitivity
- Aid translation across databases
- "Objective" search strategies
- Integrated search and screen systems



# Introduction

Discussion



Sample of citations

Citation elements (title, abstract, controlled vocabulary, body of text, etc)

Text analysis

Word frequency counts, phrases or nearby terms in text

Generic tools

Database specific (PubMed) tools

Term extraction and automatic clustering

Statistical analysis

Statistical and linguistic analysis

TF-IDF

**TerMine** 

**Automatic Clustering** 

Word or phrase lists
Visualisation

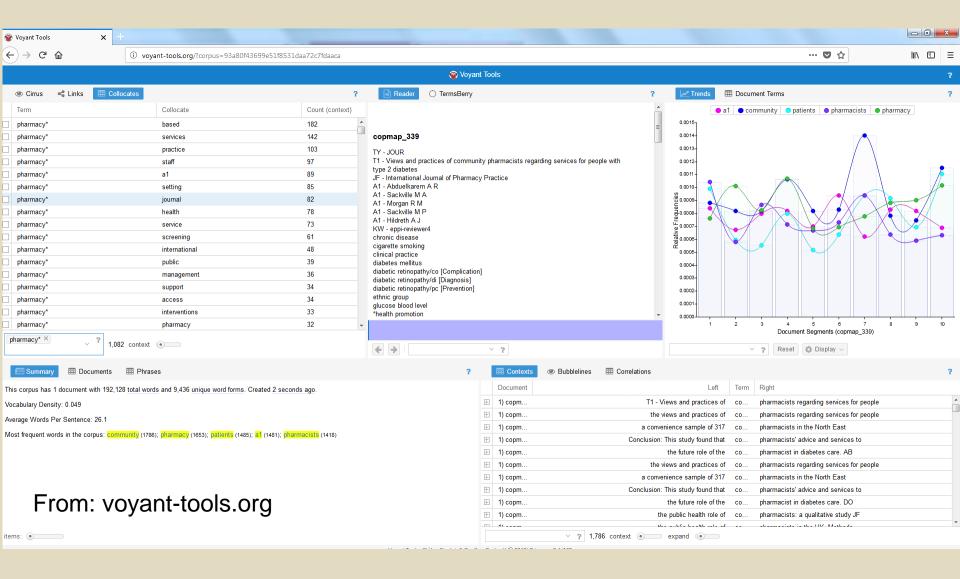
Revise search elements



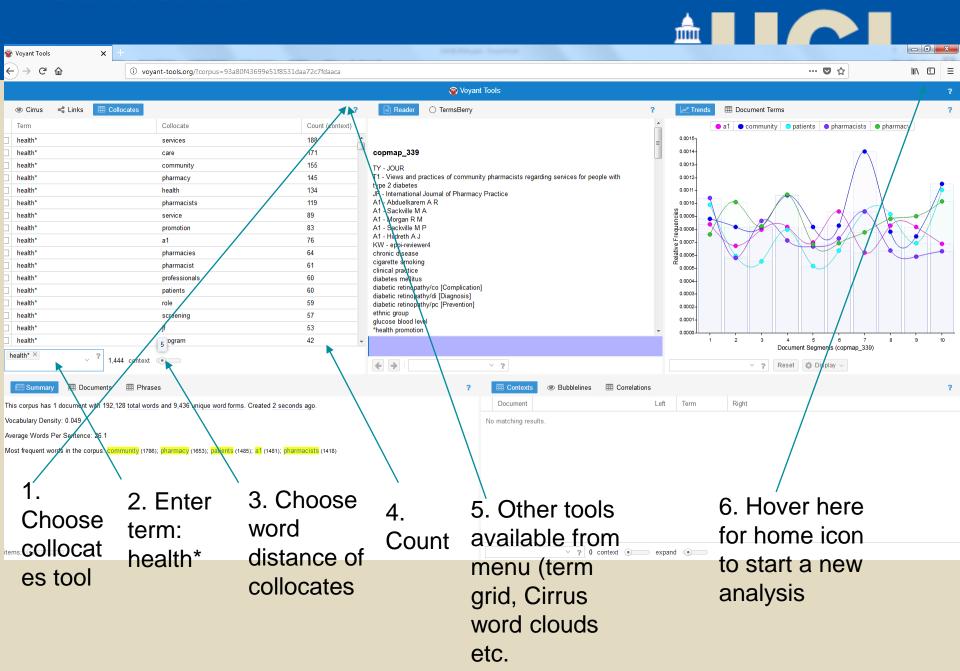
Humans assess relevance and impact to search

### Institute of Education



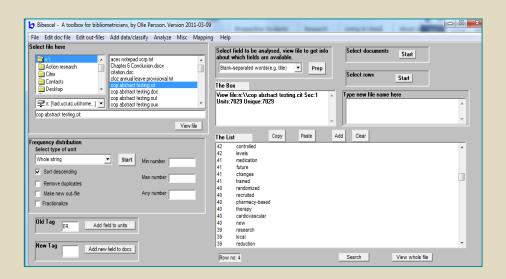


### Institute of Education

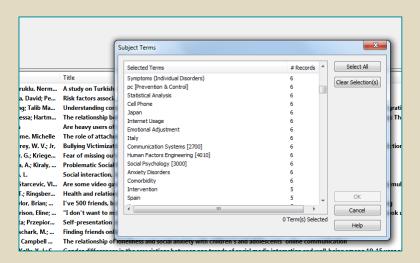




Other tools that have useful functionality include for text analysis...



Using Bibexcel to count the number of abstracts a word occurs in

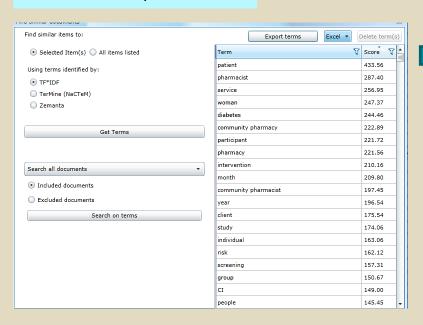


Using Endnote's
Subject
Bibliography to
generate a list of
keywords

### Institute of Education



Applying TD-IDF analysis to 338 studies of public health interventions in community pharmacies (Interface: EPPI-Reviewer 4)





| Term                 | Score V |
|----------------------|---------|
| patient              | 433.56  |
| pharmacist           | 287.40  |
| service              | 256.95  |
| woman                | 247.37  |
| diabetes             | 244.46  |
| community pharmacy   | 222.89  |
| participant          | 221.72  |
| pharmacy             | 221.56  |
| intervention         | 210.16  |
| month                | 209.80  |
| community pharmacist | 197.45  |
| year                 | 196.54  |
| client               | 175.54  |
| study                | 174.06  |
| individual           | 163.06  |
| risk                 | 162.12  |
| screening            | 157.31  |
| group                | 150.67  |
| CI                   | 149.00  |
| people               | 145.45  |



### TerMine (C-value) analysis

Found **8224** terms in 75.18 seconds - all terms (in table) (in text) - threshold: 0 Apply

TY - JOUR. T1 - Views and practices of community pharmacists regarding services for people with type 2 diabetes. JF - International Jou KW - eppi-reviewer4. chronic disease. cigarette smoking. clinical practice. diabetes mellitus. diabetic retinopathy/co [ Complication ]. diab service. home care. human. lifestyle. moslem. \*non insulin dependent diabetes mellitus. patient care. patient counseling. patient monitorii N2 - Objective: To describe the views and practices of community pharmacists regarding services for people with type 2 diabetes Metho The 26-item questionnaire covered the setting of the pharmacy, dispensing medication, and the pharmacist's role in the primary preven More than 80 % of respondents reported that they saw patients with diabetes "very often or often when they collected their prescription." medication and gave information to help them have a better understanding of their disease More than 90 % of the pharmacists believed t 10 percent of the respondents reported that they "often often promoted regular eye examinations Home blood glucose mor Conclusion: This study found that community pharmacists 'advice and services to people with type 2 diabetes fell short of the standards profession and with stakeholders about the future role of the community pharmacist in diabetes care. AB - Objective: To describe the vie questionnaire survey of a convenience sample of 317 community pharmacists in the North East of England The 26-item questionnaire co detecting undiagnosed diabetes and prevention of complications Key findings: There was a 51 % response rate More than 80 % of response quarters reported that they "never/rarely "or only "sometimes" advised patients what to expect from their medication and gave information is important, but the majority were "never/rarely or only sometimes involved in its promotion Around 10 percent of the respondents by 50 % of the respondents The majority reported that they checked prescriptions for drug interactions Conclusion: This study found that the National Service Framework for Diabetes Our findings can be used to promote discussion in the profession and with stakeholders about the National Service Framework for Diabetes Our findings can be used to promote discussion in the profession and with stakeholders about the National Service Framework for Diabetes Our findings can be used to promote discussion in the profession and with stakeholders about the National Service Framework for Diabetes Our findings can be used to promote discussion in the profession and with stakeholders about the National Service Framework for Diabetes Our findings can be used to promote discussion in the profession and with stakeholders about the National Service Framework for Diabetes Our findings can be used to promote discussion in the profession and with stakeholders about the National Service Framework for Diabetes Our findings can be used to promote the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the National Service Framework for Diabetes Our findings of the SP - 161, EP - 168, CY -, SN - 0961-7671, U1 - 32847778, U2 - 136708, N1 -, ER - . . TY - RPRT, T1 - Findings of a survey of needle exc Survey results. Needles for injection. Drug abuse. Drugs of abuse. Hepatitis C. Questionnaires. Data collection. Risk assessment. Nation - This survey was instigated in response to the 2004 DH 'Hepatitis C Action Plan for England' It examines the nature and extent of provis commissioning and planning of needle exchange services, and it assesses the levels and quality of data collection. The survey comprise exchange scheme co-ordinators It uncovered a 'mixed economy'of needle exchange facilities present in the majority of drug action teams activity and a lack of uniformity between services The level of data on needle exchange throughput and activity was poor, raising concer - This survey was instigated in response to the 2004 DH 'Hepatitis C Action Plan for England' It examines the nature and extent of provis commissioning and planning of needle exchange services, and it assesses the levels and quality of data collection. The survey comprise exchange scheme co-ordinators It uncovered a 'mixed economy'of needle exchange facilities present in the majority of drug action teams activity and a lack of uniformity between services The level of data on needle exchange throughput and activity was poor, raising concer - IS - Research Briefing: 17, CY - UK, UR - http://www.nta.nhs.uk/publications/docs/RB17 ned xch.pdf, PB - NHS National Treatment T1 - Strategies enhancing the public health role of community pharmacists: a qualitative study. JF - Journal of Pharmaceutical Health Se N2 - Objectives: This study interviewed healthcare professionals to identify strategies enhancing the public health role of community pha 'HD Call Recorder for Skype 'The qualitative data software package NVivo (version 10) was used for the storage, retrieval and analysis strategies to enhance the public health role of community pharmacists in the UK They included empowerment through education and aw social media in practice, the use of independent pharmacist practitioners (IPPs), teaching communication methods to students and phe and changing the undergraduate pharmacy curriculum to increase its public health content in terms of benefits, enhancing the public health content in terms of benefits, enhancing the public health content in terms of benefits. between healthcare professionals, enhance the knowledge base of practitioners, reduce negative perceptions about pharmacists and bi Text view: applying Termine to 338 studies of public health interventions in community pharmacies

From NacTeM http://www.nact em.ac.uk/softwa re/termine/cgibin/termine\_cval ue.cgi

### Institute of Education



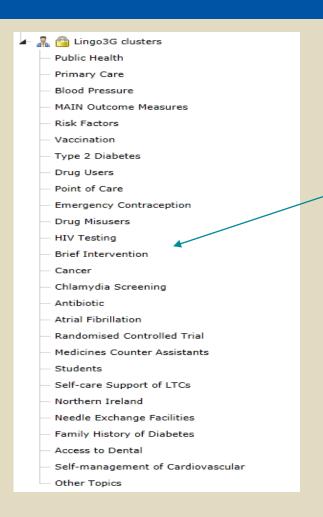
| Rank | Term                   | Score      |
|------|------------------------|------------|
| 1    | community pharmacy     | 1033.88501 |
|      | community pharmacist   | 451.192322 |
| 3    | public health          | 232.711411 |
| 4    | blood pressure         | 175        |
| 5    | risk factor            | 147.822144 |
| 6    | primary care           | 138.600006 |
| 7    | health service         | 122.838188 |
| 8    | main outcome           | 117.029854 |
| 9    | main outcome measures  | 113.789383 |
| 10   | needle exchange        | 110.720993 |
| 11   | drug user              | 100.849159 |
| 12   | health care            | 99.918594  |
| 13   | pharmacy service       | 96         |
| 14   | intervention group     | 89.111115  |
| 15   | public health service  | 88.340805  |
| 16   | cardiovascular disease | 82.647057  |
| 17   | usual care             | 79.789474  |
| 18   | health promotion       | 72.078949  |
| 19   | control group          | 71.555557  |
| 20   | pharmacy practice      | 71.099998  |
| 21   | weight management      | 70.578125  |
| 22   | body mass index        | 69.73835   |
| 23   | cardiovascular risk    | 66.903847  |
| 24   | vaccination rate       | 66.117645  |
| 25   | international journal  | 62.5       |
| 26   | pharmacy staff         | 62.421051  |
| 27   | weight loss            | 61.708332  |
| 28   | drug therapy           | 61         |
| 29   | risk assessment        | 60.314285  |
| 30   | hiv testing            | 57.882355  |
| 31   | blood glucose          | 57.468086  |

Table view: Applying
Termine to 338 studies of
public health interventions
in community pharmacies

From NacTeM http://www.nact em.ac.uk/softwa re/termine/cgi-bin/termine\_cval ue.cgi

### Institute of Education





Lingo3G groups sets of citations and assigns labels

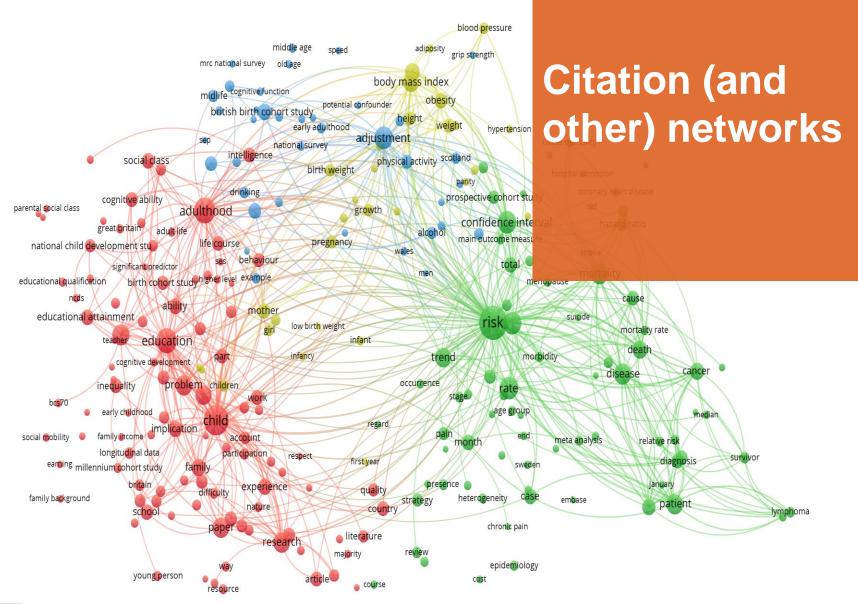
Using Lingo3G to map the same studies of public health interventions in community pharmacies, N=338 (Interface: EPPI-Reviewer 4)



# **Tools**

- Termine
- Voyant tools
- BibExcel

### waist circumference







# Citation networks

- Frequently used for supplementary searching
- Rarely the main strategy concerns re bias and lack of tools with sufficient coverage
- This may be changing



# Neural networks

- Currently a very popular machine learning technology
- Can model the interrelationships between huge numbers of words – and concepts
- Underpins Microsoft Academic 'recommended papers' (combined with citation relationships)



# **Tools**

- Sources of data
  - Traditional e.g. Web of Science / Scopus
  - Newer CrossRef / Microsoft Academic
- Tools
  - Web browser
  - Publish or Perish (now at v.6)
  - VosViewer / + related



# BREAK

# **Using machine** classifiers



# What does a classifier do?

- It takes as its input the title and abstract describing a publication
- It outputs a 'probability' score between 0 and 1 which indicates how likely the publication is to being the 'positive class' (e.g. is an RCT)
- Classification is an integral part of the 'evidence pipeline'



# Pre-built or 'build your own'

- Pre-built in EPPI-Reviewer
  - Developed from established datasets
  - RCT model
  - Human studies model
  - Systematic review model
  - Economic evaluation
- Build your own
  - Within individual reviews (e.g for iterative citation screening)
  - Across reviews (similar to above)





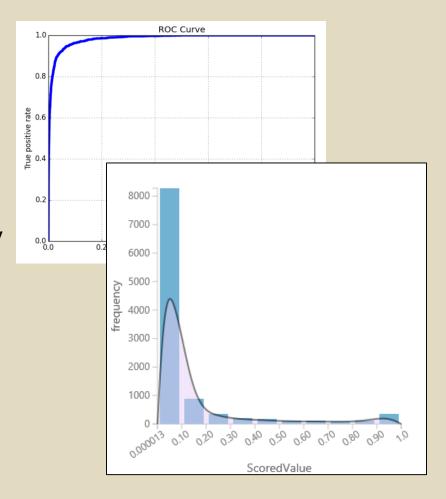
# Building classification tools: no easy task

- Quality of data
- Generalisability
- Stages
  - Build the classifier
  - Calibrate for desired precision / recall
  - Validate



## Pre-built classifier

- An RCT classifier was built using more than 280,000 records from Cochrane Crowd
- 60% of the studies have scores < 0.1</li>
- If we trust the machine, and automatically exclude these citations, we're left with 99.897% of the RCTs (i.e. we lose 0.1%)
- Is that good enough?
- Systematic review community needs to discuss appropriate uses of automation



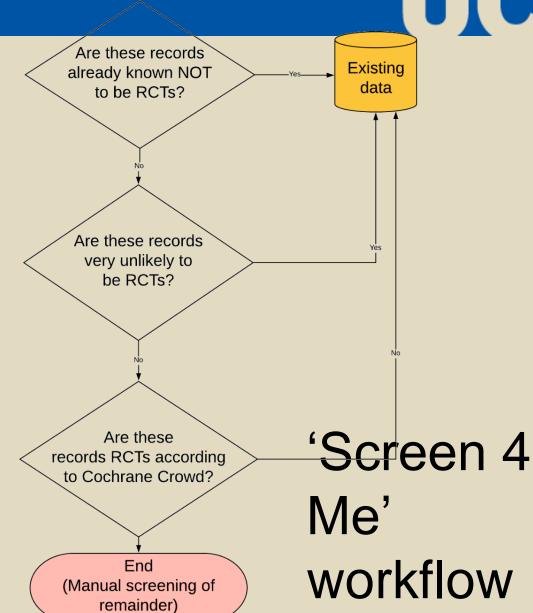


### The 'Screen 4 Me' workflow

- A new service which is currently being rolled out for Cochrane authors
- 1. Upload search results
- 2. Non-RCTs removed using:
  - a) Data reuse
  - b) Machine learning
  - c) Crowdsourcing
- Remaining records returned to authorsOffers huge efficiencies for these reviews

Start: conduct usual review searches







# 'Build your own'

- Citation screening for individual reviews
- For use across reviews (dependent on data)



#### RESEARCH

Open Access

Using text mining for study identification in systematic reviews: a systematic review of current approaches

Alison O'Mara-Eves<sup>1</sup>, James Thomas<sup>1\*</sup>, John McNaught<sup>2</sup>, Makoto Miwa<sup>3</sup> and Sophia Ananiadou<sup>2</sup>

#### Abstract

Background: The large and growing number of published studies, and their increasing rate of publication, makes the task of identifying relevant studies in an unbiased way for inclusion in systematic reviews both complex and time consuming. Text mining has been offered as a potential solution: through automating some of the screening process, reviewer time can be saved. The evidence base around the use of text mining for screening has not yet been pulled together systematically; this systematic review fills that research gap. Focusing mainly on non-technical issues, the review aims to increase awareness of the potential of these technologies and promote further collaborative research between the computer science and systematic review communities.

Methods: Five research questions led our review: what is the state of the evidence base; how has workload reduction been evaluated; what are the purposes of semi-automation and how effective are they; how have key contextual problems of anohying text minion to the systematic review field been addressed; and what challenges to

### Citation screening

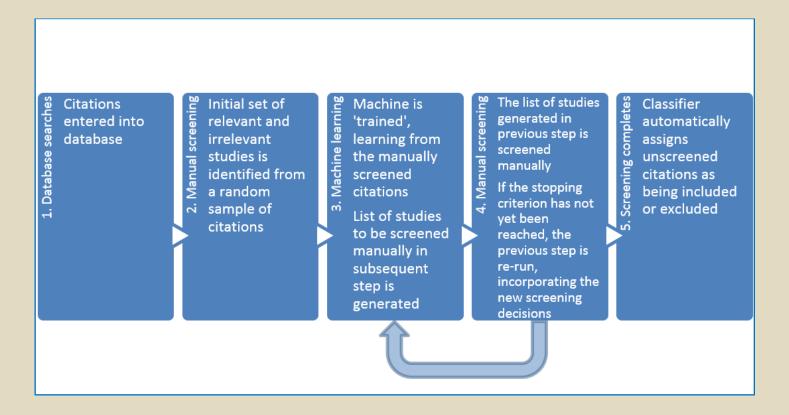
- Has received most R&D attention
- Diverse evidence base; difficult to compare evaluations
- 'semi-automated' approaches are the most common
- Possible reductions in workload in excess of 30% (and up to 97%)

### **Summary of conclusions**

- Screening prioritisation
  - · 'safe to use'
- Machine as a 'second screener'
  - Use with care
- Automatic study exclusion
  - Highly promising in many areas, but performance varies significantly depending on the domain of literature being screened

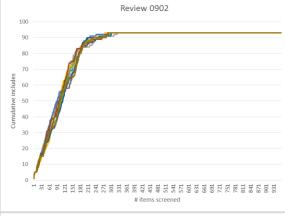


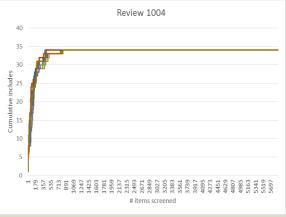
### How the machine learns...

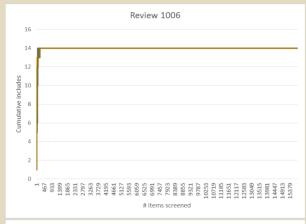


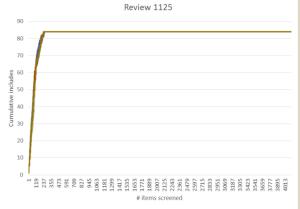


# Does it work? e.g. reviews from Cochrane Heart Group

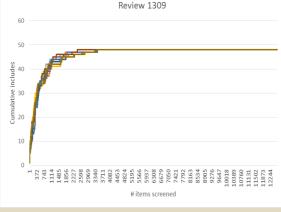














# Testing models for TRoPHI register of health promotion controlled trials

| N=9,431 records     | Pre-built RCT classifier |         | Build your own classifier |         |             |         |
|---------------------|--------------------------|---------|---------------------------|---------|-------------|---------|
|                     |                          |         | Best                      |         | Second best |         |
| Items scored 11-99: | RCTs                     | NonRCTs | RCTs                      | NonRCTs | RCTs        | NonRCTs |
| Precision           |                          |         |                           |         |             |         |
|                     |                          |         |                           |         |             |         |
|                     | 12%                      | 3%      | 17%                       | 5%      | 12%         | 4%      |
| Recall              | 99%                      | 86%     | 99%                       | 99%     | 99%         | 100%    |
| Screening reduction | 43%                      |         | 58%                       |         | 41%         |         |



### **Tools**

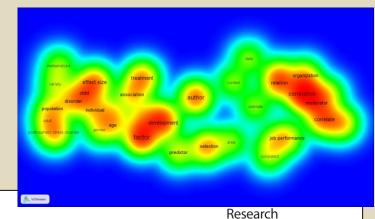
- Klasifiki [https://er5-alpha.ucl.ac.uk/klasifiki] (across reviews)
  - Very new: a version put online especially for today!
- Citation screening (within reviews)
  - Abstrakr
  - EPPI-Reviewer
  - Rayyan
  - Swift ActiveScreener





# Mapping research activity

- It is possible to apply 'keywords' to text automatically, without needing to 'teach' the machine beforehand
- This relies on 'clustering' technology – which groups studies which use similar combinations of words
- Very few evaluations
  - Can be promising, especially when time is short
  - But users have no control on the terms actually used



Original Article
Received 23 November 2012.

Accepted 21 April 2013

Synthesis Methods
Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/jrsm.1082

# 'Clustering' documents automatically to support scoping reviews of research: a case study

Claire Stansfield,\*† James Thomas† and Josephine Kavanagh†

**Background:** Scoping reviews of research help determine the feasibility and the resource requirements of conducting a systematic review, and the potential to generate a description of the literature quickly is attractive.

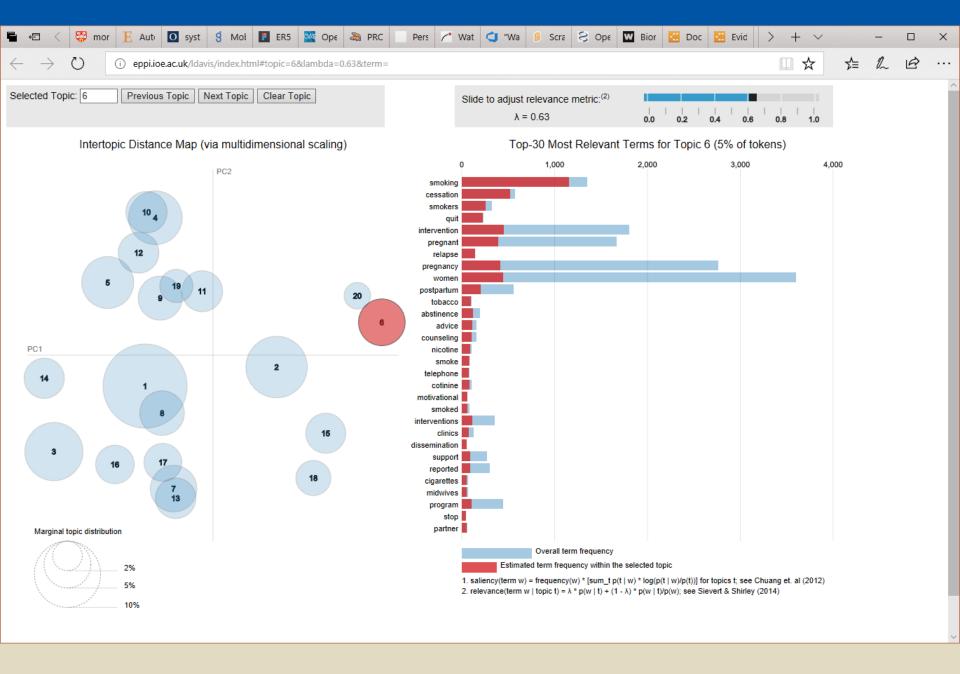
Aims: To test the utility and applicability of an automated clustering tool to describe and group research studies to improve the efficiency of scoping reviews.

Methods: A retrospective study of two completed scoping reviews was conducted. This compared the



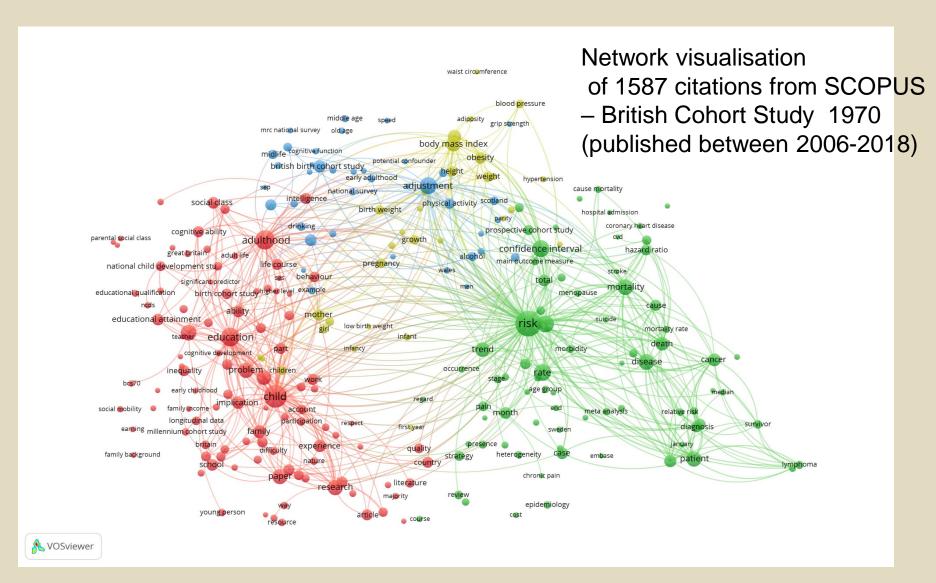
# Technologies for identifying subsets of citations

- Different families of techniques
  - Fairly simple approaches which examine term frequencies to group similar citations
  - More complex approaches, such as Latent Dirichlet Allocation (LDA)
- The difficult part is finding good labels to describe the clusters
  - But are labels always needed?
- Visualisations are often incorporated into tools



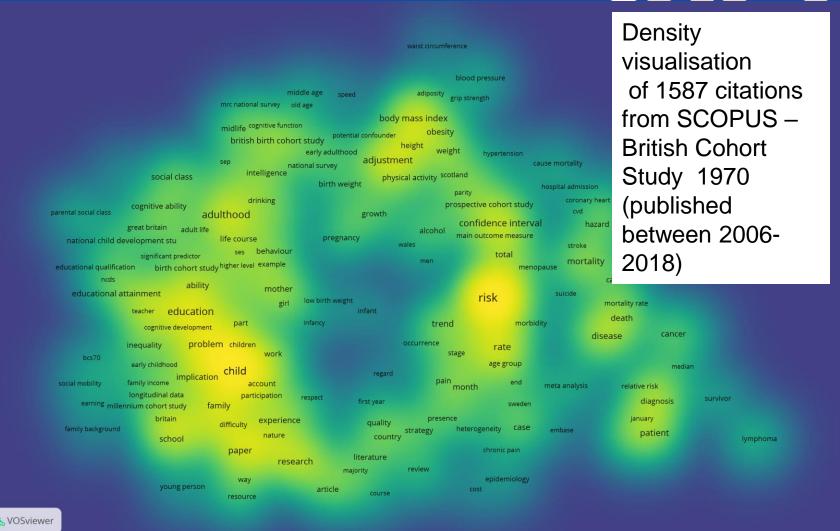
http://eppi.ioe.ac.uk/ldavis/index.html#topic=6&lambda=0.63&term=





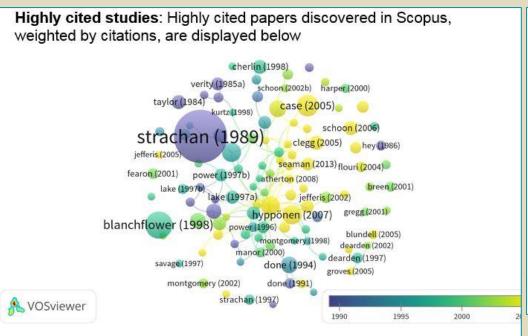
#### Institute of Education

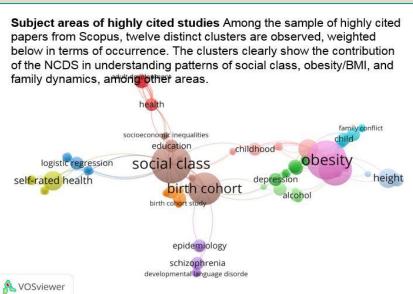






### **Citation Analysis Example**





From: Kneale et al. (2018) Taking stock: Exploring the contribution of the NCDS using systematic review techniques. Protocol and preliminary results. Poster presentation: NCDS 60 years of our lives, UCL Institute of Education, 8-9 March.

#### Institute of Education



Map of research of public health interventions in community pharmacies N=338 - titles/abstracts (minimum occurrence of term =10



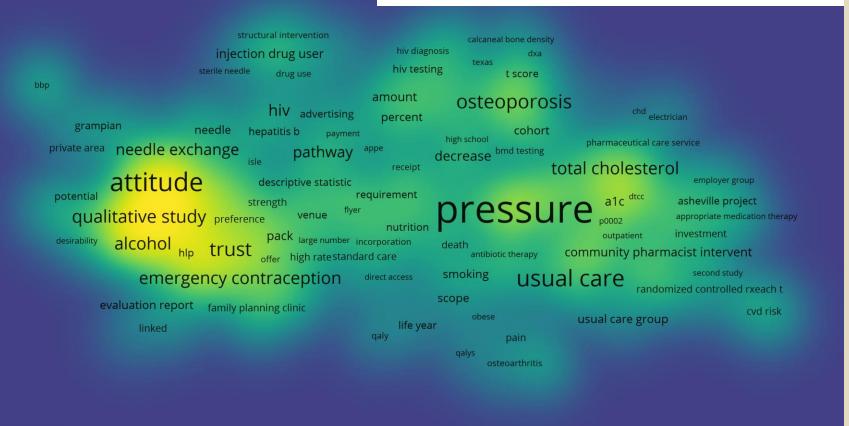




#### Institute of Education



Data as previous slide, N=338: minimum occurrence of term = 2 (instead of 10)







## RobotAnalyst

- Systematic review software designed by National Centre for Text Mining at the University of Manchester:
  - Topic modelling, term extraction, search in text and metadata,
  - Automatic classification based on user's decisions
- Currently being evaluated (users welcome! contact NaCeTM); to be released soon

http://www.nactem.ac.uk/robotanalyst/



### **Tools**

- LDAVis
- Carrot2 Search
- VosViewer
- RobotAnalyst





## Where might we be headed??

- Evidence 'surveillance'
- Living systematic reviews and guidelines
- Automated updates??



### Surveillance work flow

Federated search



Deduplication



Classification (eligibility assessment)



Full text retrieval



Key information extraction (e.g. # participants)



Classification (e.g. PICO)



Identification of segments of text



Full text parsing



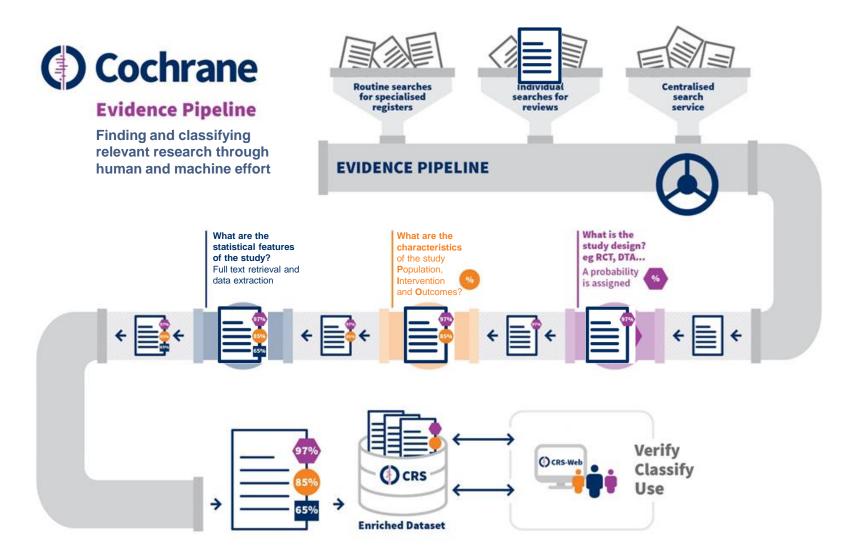
Structured data extraction (e.g. tables)



**Synthesis** 



Alert: this review / guideline may need updating

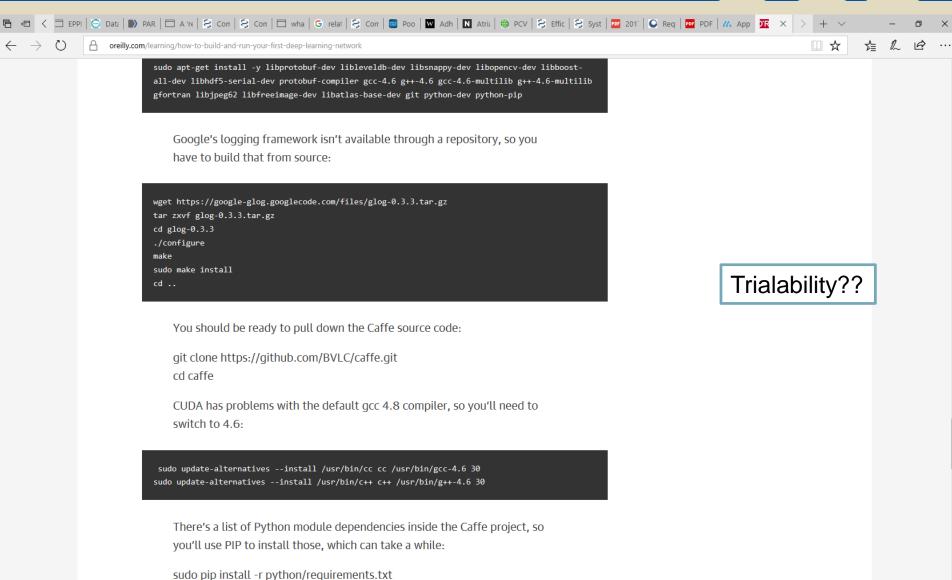


http://community.cochrane.org/tools/project-coordination-and-support/transform

**Barriers** and ATION facilitators to adoption MAJORITY (AKA 'diffusion of innovations') EARLY
MAJORITY @bryan MMathers

#### Institute of Education







### Five characteristics

### Greater relative advantage

the degree to which an innovation is perceived as better than the idea it supersedes

### Compatibility

infrastructural and conceptual

### Trialability

the degree to which an innovation may be experimented with on a limited basis

### Observability

the degree to which the results of an innovation are visible to others

### Less complexity

 the degree to which an innovation is perceived as difficult to understand and use

Rogers E. Diffusion of innovations. 5th ed. New York, NY: Free Press; 2003.

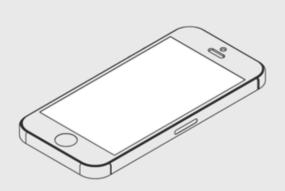
https://www.mentimeter.com/app





Go to www.menti.com and use the code 57 09 13

What methods and processes will need to be developed to use these tools?



www.menti.com



Grab your phone

2 Go to www.menti.com

Enter the code 80 60 84 and vote! Which new approach(es) are you most likely to try out for yourself?

What are your concerns?

What do you think are the potential benefits?

What methods and processes will need to be developed to use these tools?

Research registers

Review

**Efficiency** 

Topic modelling and Availability

types Skills

Information

Reduce recall

Literacy

Software

Risk

mapping

**Processes** 

Transparency

Acceptability

Opportunities

# Selected bibliography



- SR Toolbox http://systematicreviewtools.com/
- Paynter R, et al. (2016). EPC Methods: An Exploration of the Use of Text-Mining Software in Systematic Reviews. AHRQ Research White Paper.
- Thomas J, Noel-Storr A, Marshall I et al., (2017) Living Systematic Reviews: 2.
   Combining Human and Machine Effort. Journal of Clinical Epidemiology
- O'Mara-Eves A, et al. (2015). Using text mining for study identification in systematic reviews: a systematic review of current approaches. *Syst Rev* 4: 5.
- Thomas J, et al. (2011). Applications of text mining within systematic reviews. Res Synth Meth 2(1): 1-14.
- Stansfield C, et al. (in press) Text mining for search term development in systematic reviewing: a discussion of some methods and challenges. Res Synth Meth.
- https://blogs.technet.microsoft.com/machinelearning/2017/04/20/textmining-toimprove-the-health-of-millions-of-citizens/



### **Thank you**

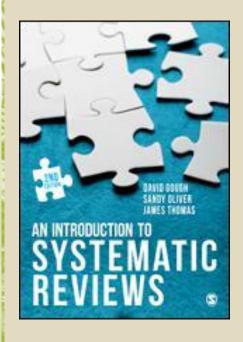
EPPI-Centre website: http://eppi.ioe.ac.uk

#### **Email**

j.thomas@ucl.ac.uk c.stansfield@ucl.ac.uk



The EPPI-Centre is part of the Social Science Research Unit at the UCL Institute of Education, University College London



#### **EPPI-Centre**

Social Science Research Unit Institute of Education University of London 18 Woburn Square London WC1H 0NR

Tel +44 (0)20 7612 6397 Fax +44 (0)20 7612 6400 Email eppi@ioe.ac.uk Web eppi.ioe.ac.uk/