Session 2: why integrate different types of research?

ESI Mixed methods evidence synthesis

14th and 15th October Aisling Hotel, Dublin

Outline

- Starting from a 'conventional' effectiveness perspective
- Consider how conventional reviews make causal claims
- Examine how this model breaks down at times
- Look at how mixed methods helps to solve this problem
- Consider how mixed methods reviews make causal claims
- Consider how mixed methods reviews expand the range of questions that evidence syntheses can address

Epistemic priorities

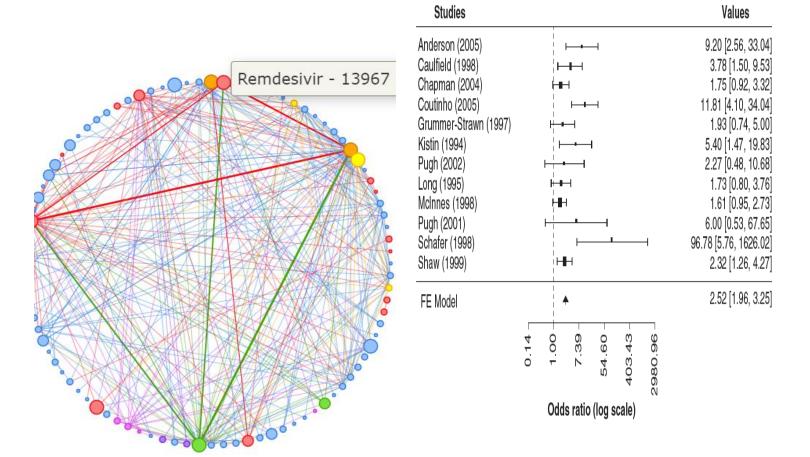
- Epistemic security in causal thinking
 - Counterfactual, probabilistic and regularity accounts
 - Mechanistic accounts
- Epistemic (in)justice in selecting which perspectives are important

- Challenge: we need to consider how to provide evidence to inform real world decisions
- BUT
- We are more secure with some accounts than others

Types of question

Is intervention a better than intervention b?

Which intervention should I choose for treating condition x in this population?



The 'simple and strong' causal model

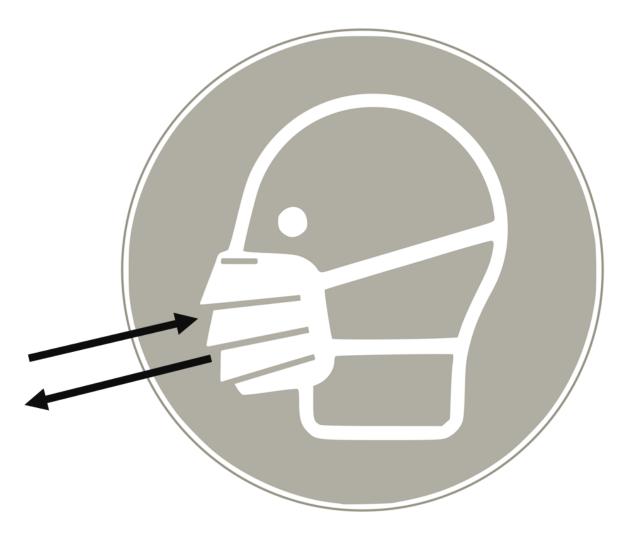
- The synthesis of randomized trials provides strong evidence of effect
- This works when we can be fairly certain that our cause is the reason we see an effect we have a strong counterfactual
- The question is:
 - how often the cause has the effect of interest
 - how large is the effect?
 - and how consistent?

Conventional and new approaches ('simple (ish!) and strong')

Traditional pairwise comparisons

Network metaanalysis

Both provide strong causal claims


COVID-19 NMA (covid-nma.com)

Face masks / coverings

 A simple mechanism: a barrier preventing / reducing SARS-CoV-2 from entering or leaving the mouth / nose

 Some studies address an exact question of efficacy – finding that masks can indeed prevent virus particles from moving in both directions

"Do masks work..?"

Moving from understanding the action of a barrier to a policy of using that barrier...

Approach for the Monitoring and Evaluation of Wearing Masks

Governments, organizations, and individuals support and promote community mitigation across settings and sectors with special attention to disproportionately affected populations Strategy **Outcomes Impact** Reduce exposure Implement wearing masks as a among individuals community mitigation strategy that prevents spread of COVID-19, Minimize COVID-19 and maintain healthy morbidity and associated environments and operations Reduce transmission mortality Strengthen, focus, or relax mitigation strategies based on Reduce burden on the Thrive socially, emotionally, local context health care system and economically Critical considerations

- Ensure individual and community ability to adopt and sustain wearing masks
- · Mitigate adverse effects and impacts on health disparities and social determinants of health
- · Foster mental and emotional health and resilience
- Minimize negative physical, mental, and emotional challenges related to wearing masks

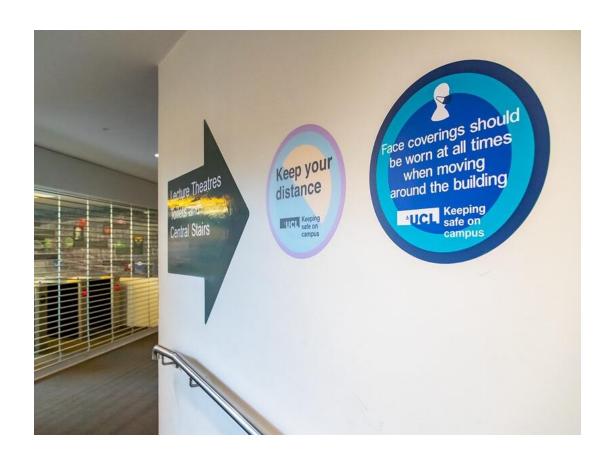
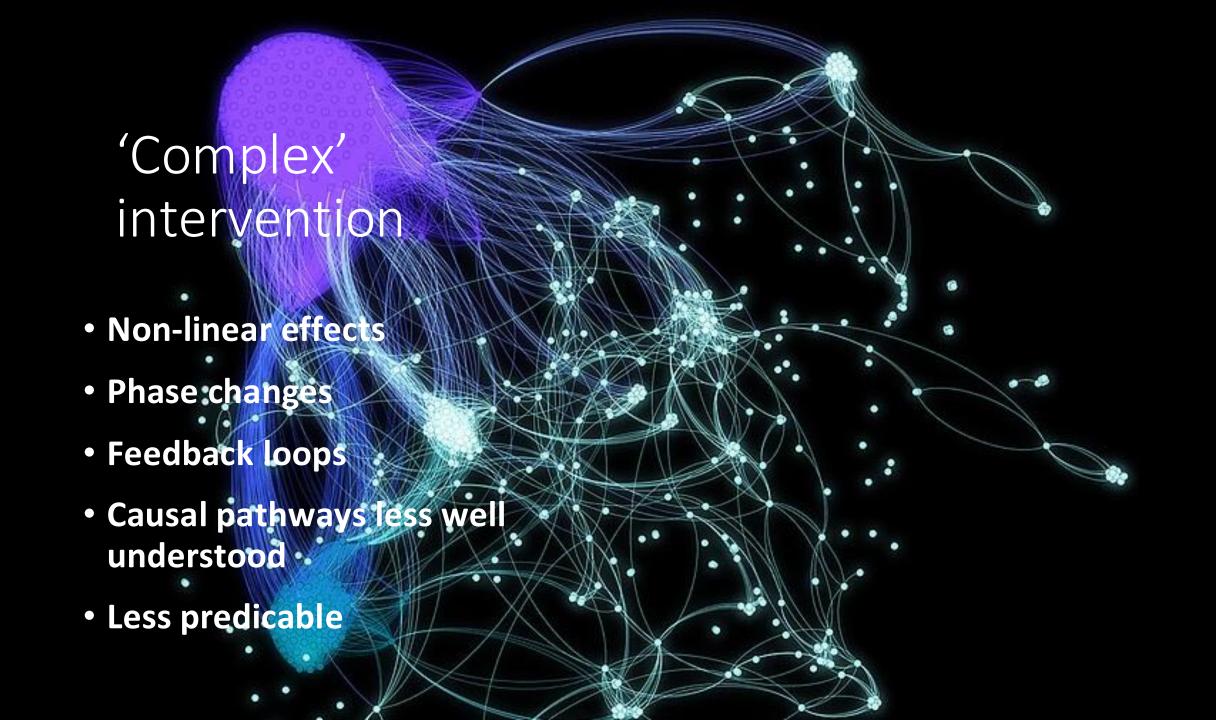
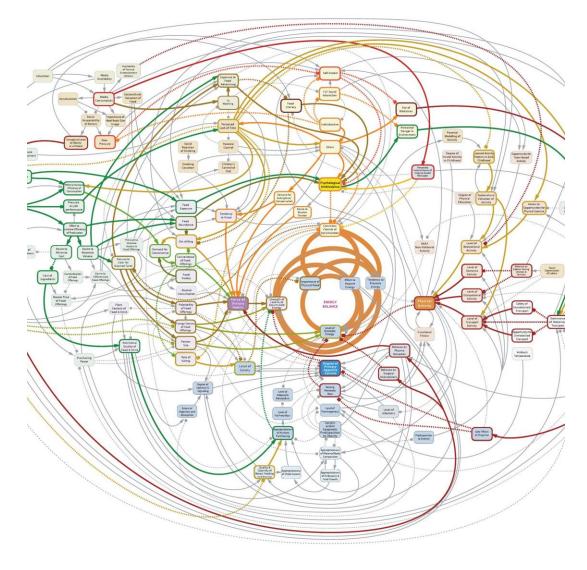


Image from: https://www.cdc.gov/coronavirus/2019-ncov/php/mask-evaluation.html





...do masks work?

When interventions are introduced into complex contexts, they can generate unintended consequences

Challenging to understand causality in linear, predictable ways

- The linear model of causation can break down when:
 - there are long causal pathways between intervention and outcome
 - there are many possible factors influencing intervention outcome
 - intervention replication is rare / impossible
 - 'examples' of interventions differ

Community engagement to reduce inequalities in health: a systematic review, meta-analysis and economic analysis

A O'Mara-Eves, ¹ G Brunton, ¹ D McDaid, ² S Oliver, ¹ J Kavanagh, ¹ F Jamal, ³ T Matosevic, ⁴ A Harden ³ and J Thomas ¹*

Declared competing interests of authors: none

Published XXXX 2013 DOI: 10.3310/phrXXXXX

This report should be referenced as follows:

O'Mara-Eves A, Brunton G, McDaid D, Oliver S, Kavanagh J, Jamal F, et al. Community engagement to reduce inequalities in health: a systematic review, meta-analysis and economic analysis. Public Health Res 2013;1(X).

¹Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre), Social Science Research Unit, Institute of Education, London, UK

²Personal Social Services Research Unit and European Observatory on Health Systems and Policies, London School of Economics and Political Science, London, UK

³Institute for Health and Human Development, University of East London, London, UK

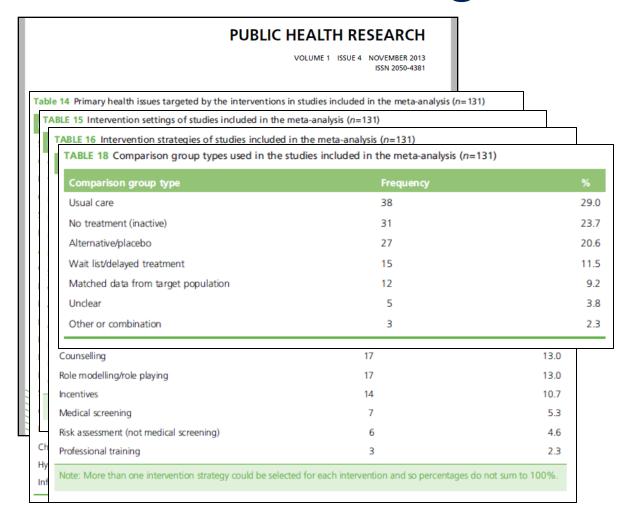
⁴Personal Social Services Research Unit, London School of Economics and Political Science, London, UK

^{*}Corresponding author

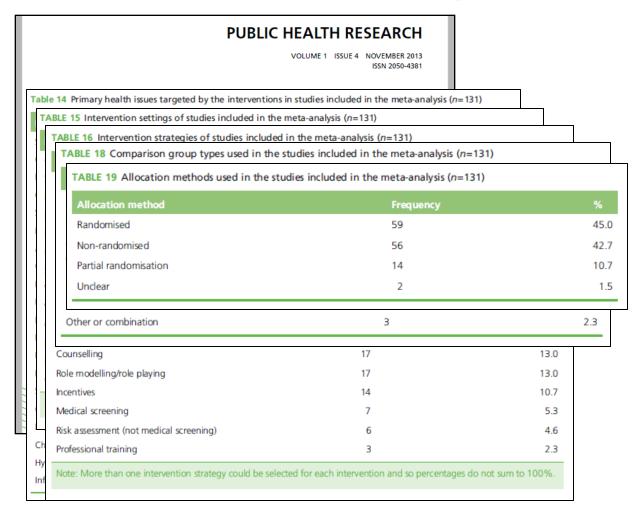
PUBLIC HEALTH RESEARCH

VOLUME 1 ISSUE 4 NOVEMBER 2013 ISSN 2050-438

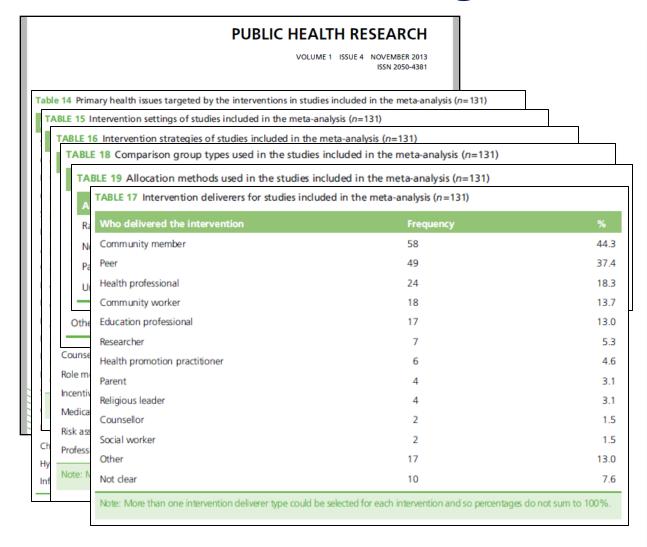
Primary health issue	Frequency	
Substance abuse	18	13.7
Cardiovascular disease	14	10.7
Breastfeeding	13	9.9
Obesity prevention/weight reduction	13	9.9
Smoking cessation	12	9.2
Public health/health promotion/prevention	8	6.1
Antenatal (prenatal) care	7	5.3
Cancer prevention	6	4.6
Diabetes prevention/management	6	4.6
Physical activity	6	4.6
Healthy eating/nutrition	5	3.8
Parenting	5	3.8
Immunisation	4	3.1
Injury prevention	4	3.1
Smoking/tobacco prevention	3	2.3
Child illness and ill health	2	1.5
Disabilities and chronic illness	2	1.5
Child abuse prevention	1	3.0
Hypertension	1	3.0
Infant mortality	1	3.0

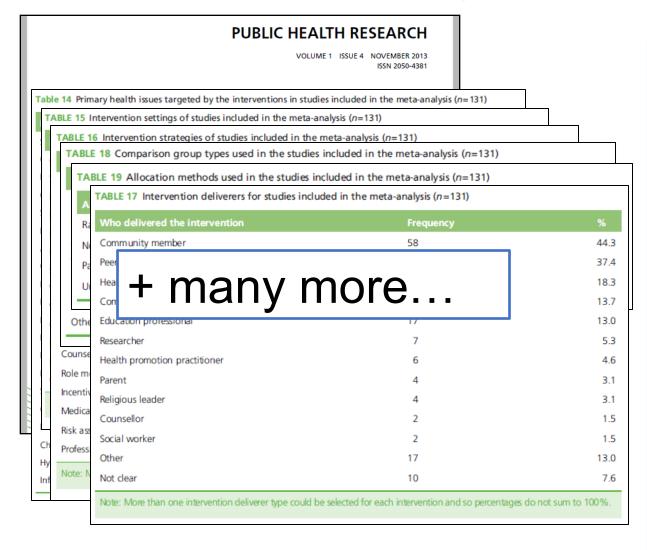

- E.g. a systematic review addressing complex questions
- 131 studies in the metaanalysis
 - Approximately 50% 'sound' in terms of RoB
- At least 200 possible covariates
- We need > 10 times more research

PUBLIC HEALTH RESEARCH VOLUME 1 ISSUE 4 NOVEMBER 2013 ISSN 2050-4381 Table 14 Primary health issues targeted by the interventions in studies included in the meta-analysis (n=131) FABLE 15 Intervention settings of studies included in the meta-analysis (n=131) Intervention setting Community setting 56 42.7 Tailored media 53 40.5 Participant's home (not care home) 50 38.2 Educational setting 36 27.5 Mass media 21 16.0 Religious setting 12.2 Secondary health care 10.7 WIC clinic 6.9 Workplace 6.9 Outreach 6.1 Primary health care 6.1 Residential care 0.8 Computer based 0.8 Note: More than one setting type could be selected for each intervention and so percentages do not sum to 100% Child abuse prevention 0.8 8.0 Hypertension Infant mortality 8.0


- E.g. a systematic review addressing complex questions
- 131 studies in the metaanalysis
 - Approximately 50% 'sound' in terms of RoB
- At least 200 possible covariates
- We need > 10 times more research

PUBLIC HEALTH RESEARCH Table 14 Primary health issues targeted by the interventions in studies included in the meta-analysis (n=131) 15 Intervention settings of studies included in the meta-analysis (n=131) TABLE 16 Intervention strategies of studies included in the meta-analysis (n=131) Intervention strategy 105 80.2 Education Advice 71 54.2 Social support 44.3 Skill development training 38.9 Activities (e.g. community fairs) 35.9 Environmental modification 22.9 Resource access 22.9 22.1 Service access Physical activity 21.4 Counselling 13.0 Role modelling/role playing 13.0 Incentives 10.7 Medical screening Risk assessment (not medical screening) 4.6 Professional training 2.3

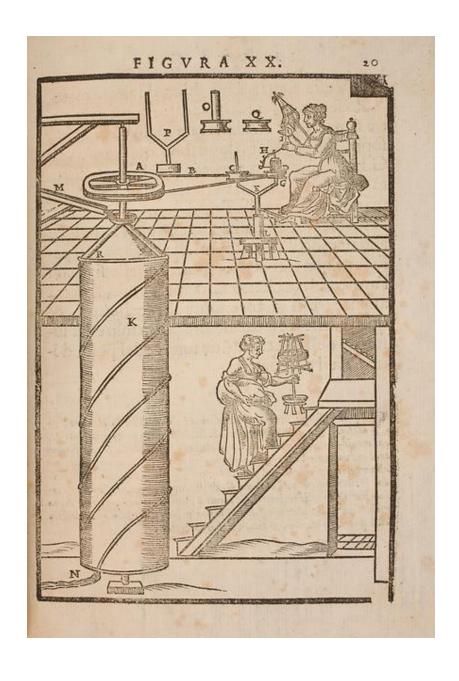

- E.g. a systematic review addressing complex questions
- 131 studies in the metaanalysis
 - Approximately 50% 'sound' in terms of RoB
- At least 200 possible covariates
- We need > 10 times more research


- E.g. a systematic review addressing complex questions
- 131 studies in the metaanalysis
 - Approximately 50% 'sound' in terms of RoB
- At least 200 possible covariates
- We need > 10 times more research

- E.g. a systematic review addressing complex questions
- 131 studies in the metaanalysis
 - Approximately 50% 'sound' in terms of RoB
- At least 200 possible covariates
- We need > 10 times more research

- E.g. a systematic review addressing complex questions
- 131 studies in the metaanalysis
 - Approximately 50% 'sound' in terms of RoB
- At least 200 possible covariates
- We need > 10 times more research

- E.g. a systematic review addressing complex questions
- 131 studies in the metaanalysis
 - Approximately 50% 'sound' in terms of RoB
- At least 200 possible covariates
- We needed >> 10 times more research


We could not rely on a probabilistic causal account

- Significant statistical heterogeneity was expected in this review
- "When operating across such a wide range of topics, populations and intervention approaches, however, there is a disjunction between the conceptual heterogeneity implied by asking broad questions and the methods for analysing statistical variance that are in our 'toolbox' for answering them"
- Potential confounding variables or interactions amongst variables made it difficult to disentangle <u>unique</u> sources of variance across the studies
- Emphasis on magnitude of the effects and "big picture" trends across studies

The focus of our enquiry changed

- Questions changed from looking at how often / reliable / large a given effect is
- Because there was no single effect
- Questions focused on explanation and understanding
- Why was the effect observed in that situation?
- What drives differences in outcomes between studies?

Question focus shifted to how the 'intervention' 'worked'

- Under what circumstances does the intervention work
- What is the relative importance of, and synergy between, different components of multicomponent interventions?
- What are the mechanisms of action by which the intervention achieves an effect?
- What are the factors that impact on implementation and participant responses?
- What is the feasibility and acceptability of the intervention in different contexts?
- What are the dynamics of the wider system?

What did we do?

Data

Theoretical Perspectives

from literature review team & advisors

Intervention descriptions

Intervention processes

participation rates, perspectives*

Intervention outcomes

categories, effect sizes

Intervention costs/benefits*

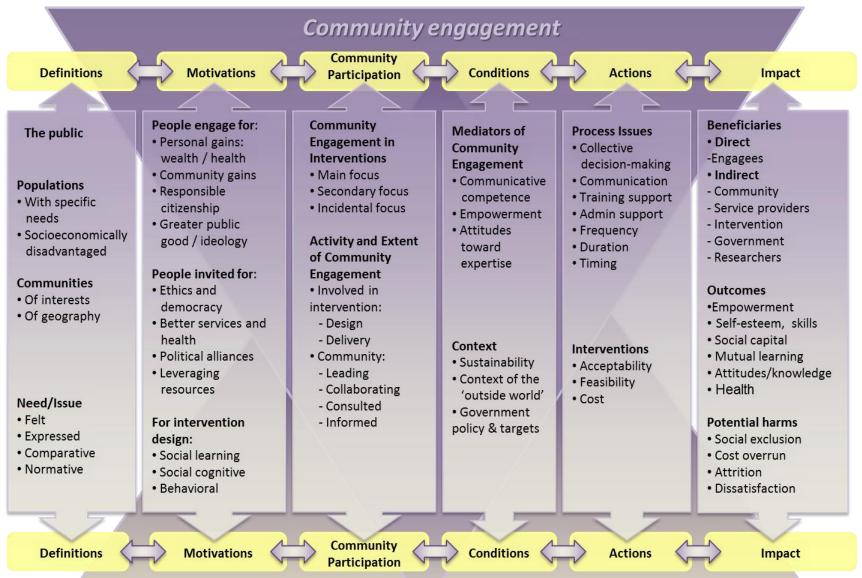
Slide from: Rees, Sutcliffe, Thomas (2013) Configurational 'qualitative' synthesis for evidence-based policy & practice... 21st Cochrane Colloquium, Quebec

Syntheses

Community engagement to reduce health inequalities

Theoretical synthesis

Meta-analysis
but huge
neterogeneity


Theories of change operationalised into an analytical model

Model exploration

explored variations in intervention effects in a theoretically grounded way

*also synthesised separately

Community Engagement in Interventions: Conceptual Framework

(Health) intervention

Observed problem Health service designs intervention to tackle the problem

Peers deliver the intervention

Delivery more empathetic, credible, etc. than before

Outcomes (higher than they would have been due to peer delivery)

Communityobserved problem Communityperceived causes of problem Community mobilises into action Communitydesigned intervention programme Intervention is more appropriate and greater community ownership than before

Outcomes (higher than they would have been due to empowerment)

Developed specific theories of change

Observed problem Health service designs intervention to tackle the problem

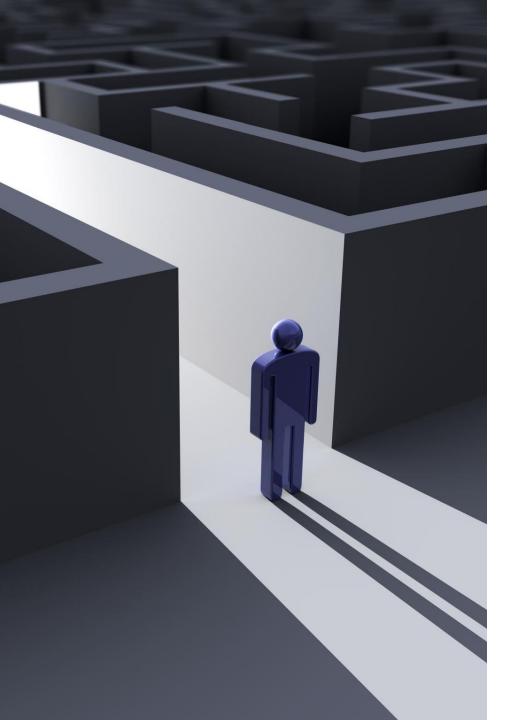
The views of stakeholders are sought Intervention is more appropriate than before Implement intervention (which has been altered by stakeholders)

Outcomes (higher than they would have been due to stakeholder input)

What was going on in the methods for that review?

- We used a (large) number of trials to evaluate intervention effects using meta-analysis
- We used detailed information about the content of intervention from trial reports
- We drew on theoretical literature
- We undertook a qualitative evidence synthesis (QES)
- We used the theoretical literature and the QES to understand differences in broad classes of intervention
- The QES and other theoretical outputs were useful in their own right

Mixed methods


- Enabled the review to generate empirically-based theories with which to understand heterogeneity between trials
- By using qualitative studies, we increased diversity of perspective within the review
- Statistical assumptions were questioned, but not 'broken'
- Utilised the relative strengths of the different studies (e.g. didn't convert between numeric and theoretical data)

On reflection

- Systematic reviews are traditionally good at addressing questions of size and consistency of effect
- We found that high conventional epistemic security takes few risks, but comes at a high cost in terms of utility
- Less good at questions of how and why we see variations in effect
- Less useful when addressing non-conventional questions (or in intervention complexity)
- Mixed methods evidence synthesis is an essential way forward

This review encapsulates challenge for evidence synthesis broadly...

- The question being asked and its context is critical: the more we stick to answering questions for which we can give epistemically secure answers, the less we can address questions that decision-makers ask
- "We usually already know before the review starts that the evidence is likely to be 'weak', or 'mixed', because complex phenomena are difficult to evaluate, and so 'hard tests' of hypotheses are uncommon..." Petticrew 2015
- The key methodological challenge is: how do we provide methodologically rigorous evidence synthesis which addresses legitimate real-world questions?

Sticking with the 'simple and strong' causal model

- Provides high causal security
- Methods well developed
- BUT
- Means abandoning the possibility of evidence-informed policy & practice in many areas
- Requires expanding how we conventionally construct causal claims

Probabilistic & mechanistic causality

Probabilistic

- No need to understand how an intervention works
- Predictive strength: same effect observed multiple times; alternative explanations ruled out
- No need to predict every individual correctly
- Does not address drivers of variation well (non-randomized)
- QA: checking that the effect does follow from the cause

Mechanistic

- Based on an understanding of how an intervention works
- Predictive strength: because we know how the intervention works, we can predict when it will happen
- Needs to explain all outcomes for all participants
- Can be fragile: one disconfirming case disconfirms the theory
- QA: has the theory been properly & adequately tested?

What we get from integration

- Ways of overcoming limitations of the two different ways of justifying causal claims
 - When you use theories to explain probabilistic findings, it helps overcome limitations in identifying the right variables in the probabilistic studies
 - When you use theories to subgroup quantitative studies, it gives you a sound and unbiased basis for subgroup analysis (avoids data dredging)
- When both ways of drawing inference 'line up' it gives you greater confidence that you're on to something
- Enables reviewers to use more of the evidence base
- Overcomes the 'there can never be enough evidence' problem

Expanding the range of questions

- Conventional approaches (these are useful!):
 - How often the cause has the effect of interest
 - How large is the effect?
 - And how consistent?
- Mixed methods often compound questions
 - Effectiveness, feasibility, appropriateness, meaningfulness
 - For example:
 - Which intervention components are most important?
 - For which participants does the intervention work best / worst?
 - What factors drive differences between observed outcomes?

Activity 2 – developing questions for mixed-methods evidence syntheses

ESI Mixed methods evidence synthesis

14th and 15th October Dublin

